NPI-20400

Product	Peak Absorption	Feature	Application
NPI-20400	313nm	No reproductive toxicity Odorless, low migration High solubility Heat resist (200 C)	Offset printing ink, flexo printing ink, ink-jet printing ink, solder resist ink, paint, varnish (slight yellowing), UV-LED curing formulation and photo resist

Country Regulation Amount Period Europe REACH China Mainland General Notification Level 2 Expected application in 2019

≥10 t

Chemical Substances Control Act

Japan

Free Radical Photoinitiator

Product	Chemical Structure	Cas No.	Peak Absorption	Application
1173	ОН	7473-98-5	244 nm, 278 nm, 322 nm	UV curing system of unsaturated polyesters and multiple functional monomers, combination with other photoinitiators, 1-4% of additive amount is recommended
184	HO	947-19-3	244 nm, 280 nm, 330 nm	Overprint varnish, plastic paint, wooden varnish, adhesives, lithograph- ic printing ink, screen printing ink, flexographic ink, electronic products
ТРО		75980-60-8	273 nm, 370 nm	Screen printing ink, lithographic printing ink, flexographic ink, wooden coating
TPO-L		84434-11-7	273 nm, 370 nm	Printing ink and adhesives of wood, metal, plastic, paper and fiber
819		162881-26-7	295 nm, 370 nm	UV curing coating for plastics
369		119313-12-1	233 nm, 324 nm (in methanol)	Combined with photoinitiators such as 184 or 651, 907, ITX in UV curing inks and coatings
379		119344-86-4	233 nm, 320 nm (in methanol)	Exclusive use or in combination with photoinitiators such as IRGACURE 184 or IRGACURE 651 in UV curing inks and varnishes for paper, metal and plastic
ОМВВ		606-28-0	253 nm	Odorless and non-toxic packaging for paper or food package, curing efficiency increased when combined with TPO

Free Radical Photoinitiator

Product	Chemical Structure	Cas No.	Peak Absorption	Application
TR-PPI-101	H—H ₂ CH ₃ R O—OH n=2-5	Closed Information	257 nm	Varnishes and coatings, inks, printing boards, adhesives; in combination reactive diluents or other liquid photoinitiators in UV water-based systems
TR-PPI-ONE	HO + HO + HO +	Closed Information	258nm	Varnishes and coatings, inks, printing boards, adhesives; in combination reactive diluents or other liquid photoinitiators in UV water-based systems
TR-PPI-102	H H ₂ C CH ₃ R O OH n=2-5	N/A	257 nm	Varnishes and coatings, inks, printing boards, adhesives; in combination reactive diluents or other liquid photoinitiators in UV water-based systems
BDK		24650-42-8	250 nm, 340 nm	UV curing varnish and ink, 2-5% of additive amount is recommended
ВР		119-61-9	210 nm, 255 nm	UV curing varnish and ink
LCV		603-48-5	260 nm	Chromogenic agent in dry film formulation
EMK		90-93-7	248 nm, 374 nm	UV curing system of acrylic acid monomers and oligomers

Cationic Photoinitiator

Product	Chemical Structure	Feature	Application
Sulfonium salt	(R ₁) _n S ⁺ X (R ₃) _m	Thermal stability with maximum absorption wavelength as 290 nm; usually in combination with ester solvents such as propylene carbonate	Ink, adhesives and photoresist
lodonium salt	$_{n}(R_{2})$ $\stackrel{\uparrow}{=}$ $(R_{1})_{m}$ X^{-}	High photoreactivity and quantum efficiency in superacid production; thermal stability with the short maximum absorption wavelength (generally under 300 nm)	Ink, adhesives and photoresist
Sulphonic acid ester	$ \begin{array}{c c} A & N & O & S \\ \hline & N & O & S \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_2 & O \\ \hline & R_2 & O \\ \hline & R_3 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_2 & O \\ \hline & R_2 & O \\ \hline & R_3 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_2 & O \\ \hline & R_2 & O \\ \hline & R_3 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_2 & O \\ \hline & R_2 & O \\ \hline & R_3 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_2 & O \\ \hline & R_3 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_2 & O \\ \hline & R_3 & O \\ \hline & R_1 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_2 & O \\ \hline & R_1 & O \\ \hline & R_1$	High photoreactivity and thermal stability; the maximum absorption wavelength as 365nm or more	Chemically amplified photoresist